

Welcome to Kedro Kubeflow Plugin’s documentation!

Contents:

	Introduction
	What is Kubeflow Pipelines?

	Why to integrate Kedro project with Pipelines?

	Installation
	Plugin installation

	Configuration parameters

	Getting Started
	Quickstart

	Google Cloud Platform support

	Kedro-Mlflow integration

	Continuous Deployment

	Authenticating to Kubeflow Pipelines API

Indices and tables

	Index

	Module Index

	Search Page

Introduction

What is Kubeflow Pipelines?

Kubeflow Pipelines [https://www.kubeflow.org/docs/pipelines/] is a platform for
building and deploying portable, scalable machine learning (ML) workflows based
on Docker containers. It works by defining pipelines with nodes (Kubernetes objects,
like pod or volume) and edges (dependencies between the nodes, like passing output
data as input). The pipelines are stored in the versioned database, allowing user
to run the pipeline once or schedule the recurring run.

Why to integrate Kedro project with Pipelines?

Kubeflow Pipelines’ main attitude is the portability. Once you define a pipeline,
it can be started on any Kubernetes cluster. The code to execute is stored inside
docker images that cover not only the source itself, but all the libraries and
entire execution environment. Portability is also one of key Kedro aspects, as
the pieplines must be versionable and packagebale. Kedro, with
Kedro-docker [https://github.com/quantumblacklabs/kedro-docker] plugin do a fantastic
job to achieve this and Kubeflow looks like a nice addon to run the pipelines
on powerful remote Kubernetes clusters.

Installation

	Plugin installation
	Kedro setup

	Plugin installation
	Install from PyPI

	Install from sources

	Available commands
	init

	ui

	list-pipelines

	compile

	upload-pipeline

	schedule

	run-once

	Configuration parameters
	Dynamic configuration support

Installation guide

Kedro setup

First, you need to install base Kedro package in <17.0 version

Kedro 17.0 is supported by kedro-kubeflow, but not by kedro-mlflow [https://github.com/Galileo-Galilei/kedro-mlflow/issues/144] yet, so the latest version from 0.16 family is recommended.

$ pip install 'kedro<0.17'

Plugin installation

Install from PyPI

You can install kedro-kubeflow plugin from PyPi with pip:

pip install --upgrade kedro-kubeflow

Install from sources

You may want to install the develop branch which has unreleased features:

pip install git+https://github.com/getindata/kedro-kubeflow.git@develop

Available commands

You can check available commands by going into project directory and runnning:

$ kedro kubeflow
Usage: kedro kubeflow [OPTIONS] COMMAND [ARGS]...

 Interact with Kubeflow Pipelines

Options:
 -e, --env TEXT Environment to use.
 -h, --help Show this message and exit.

Commands:
 compile Translates Kedro pipeline into YAML file with Kubeflow...
 init Initializes configuration for the plugin
 list-pipelines List deployed pipeline definitions
 run-once Deploy pipeline as a single run within given experiment.
 schedule Schedules recurring execution of latest version of the...
 ui Open Kubeflow Pipelines UI in new browser tab
 upload-pipeline Uploads pipeline to Kubeflow server

init

init command takes one argument (that is the kubeflow pipelines root url) and generates sample configuration file in conf/base/kubeflow.yaml. The YAML file content is described in the Configuration section.

ui

ui command opens a web browser pointing to the currently configured Kubeflow Pipelines UI. It’s super useful for debugging, especially while working on multiple Kubeflow installations.

list-pipelines

list-pipelines uses Kubeflow Pipelines to retrieve all registered pipelines

compile

compile transforms Kedro pipeline into Argo workflow (Argo is the engine that powers Kubeflow Pipelines). The resulting yaml file can be uploaded to Kubeflow Pipelines via web UI.

upload-pipeline

upload-pipeline compiles the pipeline and uploads it as a new pipeline version. The pipeline name is equal to the project name for simplicity.

schedule

schedule creates recurring run of the previously uploaded pipeline. The cron expression (required parameter) is used to define at what schedule the pipeline should run.

run-once

run-once is all-in-one command to compile the pipeline and run it in the Kubeflow environment.

Configuration

Plugin maintains the configuration in the conf/base/kubeflow.yaml file. Sample configuration can be generated using kedro kubeflow init:

Base url of the Kubeflow Pipelines, should include the schema (http/https)
host: https://kubeflow.example.com/pipelines

Configuration used to run the pipeline
run_config:

 # Name of the image to run as the pipeline steps
 image: kubeflow-plugin-demo

 # Pull pilicy to be used for the steps. Use Always if you push the images
 # on the same tag, or Never if you use only local images
 image_pull_policy: IfNotPresent

 # Location of Vertex AI GCS root, required only for vertex ai pipelines configuration
 root: bucket_name/gcs_suffix

 # Name of the kubeflow experiment to be created
 experiment_name: Kubeflow Plugin Demo

 # Name of the run for run-once
 run_name: Kubeflow Plugin Demo Run

 # Optional pipeline description
 description: Very Important Pipeline

 # Flag indicating if the run-once should wait for the pipeline to finish
 wait_for_completion: False

 # How long to keep underlying Argo workflow (together with pods and data
 # volume after pipeline finishes) [in seconds]. Default: 1 week
 ttl: 604800

 # Optional volume specification
 volume:

 # Storage class - use null (or no value) to use the default storage
 # class deployed on the Kubernetes cluster
 storageclass: # default

 # The size of the volume that is created. Applicable for some storage
 # classes
 size: 1Gi

 # Access mode of the volume used to exchange data. ReadWriteMany is
 # preferred, but it is not supported on some environements (like GKE)
 # Default value: ReadWriteOnce
 #access_modes: [ReadWriteMany]

 # Flag indicating if the data-volume-init step (copying raw data to the
 # fresh volume) should be skipped
 skip_init: False

 # Allows to specify user executing pipelines within containers
 # Default: root user (to avoid issues with volumes in GKE)
 owner: 0

 # Flak indicating if volume for inter-node data exchange should be
 # kept after the pipeline is deleted
 keep: False

 # Optional section allowing adjustment of the resources
 # reservations and limits for the nodes
 resources:

 # For nodes that require more RAM you can increase the "memory"
 data_import_step:
 memory: 2Gi

 # Training nodes can utilize more than one CPU if the algoritm
 # supports it
 model_training:
 cpu: 8
 memory: 1Gi

 # GPU-capable nodes can request 1 GPU slot
 tensorflow_step:
 nvidia.com/gpu: 1

 # Default settings for the nodes
 __default__:
 cpu: 200m
 memory: 64Mi

Dynamic configuration support

kedro-kubeflow contains hook that enables TemplatedConfigLoader [https://kedro.readthedocs.io/en/stable/kedro.config.TemplatedConfigLoader.html].
It allows passing environment variables to configuration files. It reads all environment variables following KEDRO_CONFIG_<NAME> pattern, which you
can later inject in configuration file using ${name} syntax.

There are two special variables KEDRO_CONFIG_COMMIT_ID, KEDRO_CONFIG_BRANCH_NAME with support specifying default when variable is not set,
e.g. ${commit_id|dirty}

Getting started

	Quickstart
	Preprequisites

	Install the toy project with Kubeflow Pipelines support

	Build the docker image to be used on Kubeflow Pipelines runs

	Run the pipeline on Kubeflow

	Google Cloud Platform support
	Using kedro with AI Platform Notebooks

	Using kedro-kubeflow with AI Platform Pipelines
	1. Connecting to AI Pipelines from AI Platform Notebooks

	2. Authentication to AI Pipelines from local environment

	3. Authenticating through IAP Proxy

	Using kedro-kubeflow with Vertex AI Pipelines (EXPERIMENTAL)
	1. Preparing configuration

	2. Preparing environment variables

	3. Supported commands

	Kedro-Mlflow integration

	Continuous Deployment
	Github Actions

	Authenticating to Kubeflow Pipelines API
	1. KFP behind IAP proxy on Google Cloud

	2. KFP behind Dex+authservice

Quickstart

Preprequisites

The quickstart assumes user have access to Kubeflow Pipelines deployment. Pipelines can be dedployed on any Kubernetes cluster, including local cluster [https://www.kubeflow.org/docs/pipelines/installation/localcluster-deployment/].

Install the toy project with Kubeflow Pipelines support

It is a good practice to start by creating a new virtualenv before installing new packages. Therefore, use virtalenv command to create new env and activate it:

$ virtualenv venv-demo
created virtual environment CPython3.8.5.final.0-64 in 145ms
 creator CPython3Posix(dest=/home/mario/kedro/venv-demo, clear=False, no_vcs_ignore=False, global=False)
 seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=/home/mario/.local/share/virtualenv)
 added seed packages: pip==20.3.1, setuptools==51.0.0, wheel==0.36.2
 activators BashActivator,CShellActivator,FishActivator,PowerShellActivator,PythonActivator,XonshActivator
$ source venv-demo/bin/activate

Then, kedro must be present to enable cloning the starter project, along with the latest version of kedro-kubeflow plugina and kedro-docker (required to build docker images with the Kedro pipeline nodes):

$ pip install 'kedro<0.17' kedro-kubeflow kedro-docker

With the dependencies in place, let’s create a new project:

$ kedro new --starter=git+https://github.com/getindata/kedro-starter-spaceflights.git --checkout allow_nodes_with_commas
Project Name:
=============
Please enter a human readable name for your new project.
Spaces and punctuation are allowed.
 [New Kedro Project]: Kubeflow Plugin Demo

Repository Name:
================
Please enter a directory name for your new project repository.
Alphanumeric characters, hyphens and underscores are allowed.
Lowercase is recommended.
 [kubeflow-plugin-demo]:

Python Package Name:
====================
Please enter a valid Python package name for your project package.
Alphanumeric characters and underscores are allowed.
Lowercase is recommended. Package name must start with a letter or underscore.
 [kubeflow_plugin_demo]:

Change directory to the project generated in /home/mario/kedro/kubeflow-plugin-demo

A best-practice setup includes initialising git and creating a virtual environment before running `kedro install` to install project-specific dependencies. Refer to the Kedro documentation: https://kedro.readthedocs.io/

TODO: switch to the official spaceflights starter after https://github.com/quantumblacklabs/kedro-starter-spaceflights/pull/10 is merged

Finally, go the demo project directory and ensure that kedro-kubeflow plugin is activated:

$ cd kubeflow-plugin-demo/
$ kedro install
(...)
Requirements installed!
$ kedro kubeflow --help
Usage: kedro kubeflow [OPTIONS] COMMAND [ARGS]...

 Interact with Kubeflow Pipelines

Options:
 -e, --env TEXT Environment to use.
 -h, --help Show this message and exit.

Commands:
 compile Translates Kedro pipeline into YAML file with Kubeflow...
 init Initializes configuration for the plugin
 list-pipelines List deployed pipeline definitions
 mlflow-start
 run-once Deploy pipeline as a single run within given experiment.
 schedule Schedules recurring execution of latest version of the...
 ui Open Kubeflow Pipelines UI in new browser tab
 upload-pipeline Uploads pipeline to Kubeflow server

Build the docker image to be used on Kubeflow Pipelines runs

First, initialize the project with kedro-docker configuration by running:

$ kedro docker init

This command creates a several files, including .dockerignore. This file ensures that transient files are not included in the docker image and it requires small adjustment. Open it in your favourite text editor and extend the section # except the following by adding there:

!data/01_raw

This change enforces raw data existence in the image. Also, one of the limitations of running the Kedro pipeline on Kubeflow (and not on local environemt) is inability to use MemoryDataSets, as the pipeline nodes do not share memory, so every artifact should be stored as file. The spaceflights demo configures four datasets as in-memory, so let’s change the behaviour by adding these lines to conf/base/catalog.yml:

X_train:
 type: pickle.PickleDataSet
 filepath: data/05_model_input/X_train.pickle
 layer: model_input

y_train:
 type: pickle.PickleDataSet
 filepath: data/05_model_input/y_train.pickle
 layer: model_input

X_test:
 type: pickle.PickleDataSet
 filepath: data/05_model_input/X_test.pickle
 layer: model_input

y_test:
 type: pickle.PickleDataSet
 filepath: data/05_model_input/y_test.pickle
 layer: model_input

Finally, build the image:

kedro docker build

When execution finishes, your docker image is ready. If you don’t use local cluster, you should push the image to the remote repository:

docker tag kubeflow_plugin_demo:latest remote.repo.url.com/kubeflow_plugin_demo:latest
docker push remote.repo.url.com/kubeflow_plugin_demo:latest

Run the pipeline on Kubeflow

First, run init script to create the sample configuration. A parameter value should reflect the kubeflow base path as seen from the system (so no internal Kubernetes IP unless you run the local cluster):

kedro kubeflow init https://kubeflow.cluster.com
(...)
Configuration generated in /home/mario/kedro/kubeflow-plugin-demo/conf/base/kubeflow.yaml

Then, if needed, adjust the conf/base/kubeflow.yaml. For example, the image: key should point to the full image name (like remote.repo.url.com/kubeflow_plugin_demo:latest if you pushed the image at this name). Depending on the storage classes availability in Kubernetes cluster, you may want to modify volume.storageclass and volume.access_modes (please consult with Kubernetes admin what values should be there).

Finally, everything is set to run the pipeline on Kubeflow. Run upload-pipeline:

$ kedro kubeflow upload-pipeline
2021-01-12 09:47:35,132 - kedro_kubeflow.kfpclient - INFO - No IAP_CLIENT_ID provided, skipping custom IAP authentication
2021-01-12 09:47:35,209 - kedro_kubeflow.kfpclient - INFO - Pipeline created
2021-01-12 09:47:35,209 - kedro_kubeflow.kfpclient - INFO - Pipeline link: https://kubeflow.cluster.com/#/pipelines/details/9a3e4e16-1897-48b5-9752-d350b1d1faac/version/9a3e4e16-1897-48b5-9752-d350b1d1faac

As you can see, the pipeline was compiled and uploaded into Kubeflow. Let’s visit the link:

[image: ../../_images/uploaded_pipeline.png]Uploaded pipeline

The Kubeflow pipeline reflects the Kedro pipeline with two extra steps:

	data-volume-create - creates an empty volume in Kubernetes cluster as a persistence layer for inter-steps data access

	data-volume-init - initialized the volume with 01_raw data when the pipeline starts

By using Create run button you can start a run of the pipeline on the cluster. A run behaves like kedro run command, but the steps are executed on the remote cluster. The outputs are stored on the persistent volume, and passed as the inputs accordingly to how Kedro nodes need them.

[image: ../../_images/pipeline_run.gif]Pipeline run

From the UI you can access the logs of the execution. If everything seems fine, use `schedule to create a recurring run:

$ kedro kubeflow schedule --cron-expression '0 0 4 * * *'
(...)
2021-01-12 12:37:23,086 - kedro_kubeflow.kfpclient - INFO - No IAP_CLIENT_ID provided, skipping custom IAP authentication
2021-01-12 12:37:23,096 - root - INFO - Creating experiment Kubeflow Plugin Demo.
2021-01-12 12:37:23,103 - kedro_kubeflow.kfpclient - INFO - New experiment created: 2123c082-b336-4093-bf3f-ce73f68b66b4
2021-01-12 12:37:23,147 - kedro_kubeflow.kfpclient - INFO - Pipeline scheduled to 0 0 4 * * *

You can see that the new experiment was created (that will group the runs) and the pipeline was scheduled. Please note, that Kubeflow uses 6-places cron expression (as opposite to Linux’s cron with 5-places), where first place is the second indicator.

[image: ../../_images/scheduled_run.png]Scheduled run

GCP AI Platform support

Google Cloud’s AI Platform offers couple services that simplify Machine Learning
tasks with use of Kubeflow based components.

Using kedro with AI Platform Notebooks

AI Platform Notebooks [https://cloud.google.com/ai-platform-notebooks] provides
an easy way to manage and host JupyterLab based data science workbench environment.
What we’ve found out is that the default images provided by a service cause some
dependency conflicts. To avoid this issues make sure you use isolated virtual
environment, e.g. virtualenv [https://pypi.org/project/virtualenv/]. New virual
environment can be created by simply invoking python -m virtualenv venv command.

Using kedro-kubeflow with AI Platform Pipelines

AI Platform Pipelines [https://cloud.google.com/ai-platform/pipelines/docs/introduction]
is a service that allows to easily deploy Kubeflow Pipelines [https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/]
on new or existing Google Kubernetes Engine clusters.

In general kedro-kubeflow plugin should work with AI Platform Pipelines out of
the box, with the only exception is that it requires authentication. Note that the host
variable should point to a dashbard URL generated by AI Platform Pipelines service
(e.g. https://653hddae86eb7b0-dot-europe-west1.pipelines.googleusercontent.com/),
just open the dashboard from the service page [https://console.cloud.google.com/ai-platform/pipelines/clusters]
and copy url from the browser.

Below is the list of authentication scenarios supported so far:

1. Connecting to AI Pipelines from AI Platform Notebooks

In this scenario authentication works out of the box with default credentials
mechanism.

2. Authentication to AI Pipelines from local environment

To interact with AI Platform Pipelines from local environment you can use the
mechanisms provided by Google Cloud SDK [https://cloud.google.com/sdk]. After
installing the SDK run google cloud application-default login to initialize
default credentials on your local machine.

You can use service account key for authentication as well. To make that work just
set GOOGLE_APPLICATION_CREDENTIALS environment variable to the path of where the
service account key file is stored.

3. Authenticating through IAP Proxy

Identity Aware Proxy [https://cloud.google.com/iap] is a product that allows
securing your cloud based applications with Google Identity.

To authenticate with IAP find out which oauth client ID is the proxy configured
with and then save it in IAP_CLIENT_ID environment variable. The authentication
should work seamlessly assuming identity you are using has been granted access to
the application.

The above will work if you are connecting from within GCP VM or locally with specified
service account credentials. It will NOT work for credentials obtained with google cloud application-default login.

Using kedro-kubeflow with Vertex AI Pipelines (EXPERIMENTAL)

Vertex AI Pipelines [https://cloud.google.com/vertex-ai/docs/pipelines]
is a fully managed service that allows to easily deploy
Kubeflow Pipelines [https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/]
on a serverless Google service. Vertex AI Pipelines [https://cloud.google.com/vertex-ai/docs/pipelines]
was still in a Preview mode when this plugin version was released, therefore plugin
capability is also limited.

1. Preparing configuration

In order the plugin picks Vertex AI Pipelines as a target infrastructure, it has to be indicated
in configuration. As the solution is serverless, no URL is to be provided. Instead, special set
of parameters has to be passed, so that connection is established with proper GCP service.

host: vertex-ai-pipelines
project_id: hosting-project
region: europe-west4
run_config:
 root: vertex-ai-pipelines-accessible-gcs-bucket/pipelines-specific-path

If the pipeline requires access to services that are not exposed to public internet, you need to configure VPC peering between Vertex internal network and VPC that hosts the internal service [https://cloud.google.com/vertex-ai/docs/general/vpc-peering] and then set the VPC identifier in the configuration. Optionally, you can add custom host aliases:

run_config:
 vertex_ai_networking:
 vpc: projects/12345/global/networks/name-of-vpc
 host_aliases:
 - ip: 10.10.10.10
 hostnames: ['mlflow.internal']
 - ip: 10.10.20.20
 hostnames: ['featurestore.internal']

2. Preparing environment variables

There’re the following specific environment variables required for the pipeline to run correctly:

	SERVICE_ACCOUNT - full email of service account that job will use to run the pipeline. Account has
to have access to run_config.root path. Variable is optional, if no given, project compute account is used

	MLFLOW_TRACKING_TOKEN - identity token required if MLFlow is used inside the project and mlflow access
is protected. Token is passed as it is to kedro nodes in order to authenticate against MLFlow service.
Can be generated via gcloud auth print-identity-token command.

3. Supported commands

Following commands are supported:

kedro kubeflow compile
kedro kubeflow run-once
kedro kubeflow schedule
kedro kubeflow list-pipelines

[image: ../../_images/vertex_ai_pipelines.png]Vertex_AI_Pipelines

Mlflow support

If you use MLflow [https://mlflow.org/] and kedro-mlflow [https://kedro-mlflow.readthedocs.io/] for the Kedro pipeline runs monitoring, the plugin will automatically enable support for:

	starting the experiment when the pipeline starts,

	logging all the parameters, tags, metrics and artifacts under unified MLFlow run.

To make sure that the plugin discovery mechanism works, add kedro-mlflow and kedro-kubeflow as a dependencies to src/requirements.in and run:

$ pip-compile src/requirements.in > src/requirements.txt
$ kedro install
$ kedro mlflow init

Then, adjust the kedro-mlflow configuration and point to the mlflow server by editing conf/base/mlflow.yml and adjusting mlflow_tracking_uri key. Then, build the image:

$ kedro docker build

And re-push the image to the remote registry. Finally, reupload the pipeline:

$ kedro kubeflow upload-pipeline
(...)
2021-01-12 13:05:56,879 - kedro_kubeflow.kfpclient - INFO - No IAP_CLIENT_ID provided, skipping custom IAP authentication
2021-01-12 13:05:56,973 - kedro_kubeflow.kfpclient - INFO - New version of pipeline created: ba3a05c2-2f19-40c5-809e-0ed7c2989000
2021-01-12 13:05:56,973 - kedro_kubeflow.kfpclient - INFO - Pipeline link: http://10.43.54.89/#/pipelines/details/9a3e4e16-1897-48b5-9752-d350b1d1faac/version/ba3a05c2-2f19-40c5-809e-0ed7c2989000

And verify how does it look in the Kubeflow UI. You should notice mlflow-start-run step on the very top:

[image: ../../_images/pipeline_mlflow.png]Pipeline with Mlflow

Finally, start the pipeline. While it executes, the new Mlflow run is started and it’s constantly updated with the attributes provided by the next steps. Finally, the experiments runs page looks like:

[image: ../../_images/mlflow_ui.png]Mlflow UI

The UI presents the pipeline stauts (in form of the icon) and latest node that was run (for failed runs in indicates at what step did the pipeline fail). Also, the kubeflow_run_id tag can be used to correlate Mlflow run with the Kubeflow pipeline execution.

Continuous Deployment

With kedro pipelines started on the remote Kubeflow Pipelnes clusters, changes in the code require re-building docker images and (sometimes) changing the pipeline structure. To simplify this workflow, Kedro-kubeflow plugin is capable of creating configuration for the most popular CI/CD automation tools.

The autogenerated configuration defines these actions:

	on any new push to the repository - image is re-built and the pipeline is started using run-once,

	on merge to master - image is re-built, the pipeline is registered in the Pipelines and scheduled to execute on the daily basis.

The behaviour and parameters (like schedule expression) can be adjusted by editing the genrated files. The configuration assumes that Google Container Registry is used to store the images, but users can freely adapt it to any (private or public) docker images registry.

Github Actions

If the Kedro project is stored on github (either in private or public repository), Github Actions can be used to automate the Continuous Deployment. To configure the repository, go to Settings->Secrets and add there:

	GKE_PROJECT: ID of the google project.

	GKE_SA_KEY: service account key, encoded with base64 (this service account must have access to push images into registry),

	IAP_CLIENT_ID: id of the IAP proxy client to communicate with rest APIs.

Next, re-configure the project using

kedro kubeflow init --with-github-actions https://<endpoint_name>.endpoints.<project-name>.cloud.goog/pipelines

This command will generate Github Actions in .github/workflows directory. Then push the code to any branch and go to “Actions” tab in Github interface.

Authenticating to Kubeflow Pipelines API

Plugin supports 2 ways of authenticating to Kubeflow Pipelines API:

1. KFP behind IAP proxy on Google Cloud

It’s already described in GCP AI Platform support chapter.

2. KFP behind Dex+authservice

Dex is the recommended authentication mechanism for on-premise Kubeflow clusters. The usual setup looks in a way that:

	oidc-autheservice [https://github.com/arrikto/oidc-authservice] redirect unauthenticated users to Dex,

	Dex [https://github.com/dexidp/dex] authenticates user in remote system, like LDAP or OpenID and also acts as OpenID provider,

	oidc-autheservice asks Dex for token and creates the session used across entire Kubeflow.

In order to use kedro-kubeflow behind Dex-secured clusters, use the following manual:

	Setup staticPassword [https://github.com/dexidp/dex/blob/b79d9a84bc0c35e13a9d5141e95b641af0f81c8f/cmd/dex/config_test.go#L105] authentication method and add a user that you’re going to use as CI/CD account.

	Point your Kedro project to /pipeline API on Kubeflow, for example: https://kubeflow.local/pipeline

	Set environment variables DEX_USERNAME and DEX_PASSWORD before calling kedro kubeflow

Index

 _static/plus.png

_static/file.png

_static/minus.png

_images/vertex_ai_pipelines.png
Google Cloud Platform 8 gid-ml-ops-sandbox v Q Search products and resources

Vertex Al < run32-local icLoNe @sToP Pipeline run analysis

bashboard @ Runtime Graph @ 8/8 steps completed B ExpandArtifacts ~ 80% & & Q (] SUMMARY NODE INFO
ashboart -

Datasets Basic info
@ miflow-start-run @ data-volume-init
© Features i oo ﬂ\ghlsi;emo — NI orior. ights demoe1118ds7 [Duration 14min2 sec
® Labeling tasks Started Jul 27,2021, 11:47:43 AM
Completed Jul 27,2021, 12:01:46 PM
B Notebooks §y Preprocessing-companies @) @ preprocessing-shuttles) Run name run32-local
NP orior. fights demo61118d67 NP oo fights-demos1118ds7 o
Pipeline name miops-spaceflights-demo
Pipelines
WD Runtime environment Serverless
Training Region europe-west4
E E Service account 29350373243-
A Experiments compute@developer.gserviceaccount.com
Debugging info View pipeline proto
® Models
@ create-master-table
NP orior. fights-demo61118d67 ©
@ Endpoints
A Batch predictions
Metadata

o vt)

/ Seriol et demo eTiee7 \

in-model o

gerio/..flights-demo:61118d67

@& evaluate-model o
NP oo Nights demosst18ds7

>

<l Logs

_images/scheduled_run.png
Experiments >

Kubeflow Plugin Demo

¢ Kubeflow Plugin Demoon Q04 ***

Recurring run details

Description

Created at

Run trigger

Enabled
Trigger
Max. concurrent runs

Catchup

112/2021,12:37:23 PM

Yes
004***
1

true

_images/uploaded_pipeline.png
Pipelines

+ Create run
Kubeflow Plugin Demo (Kubeflow Plugin Demo) -

Graph YAML

data-volume-create

N

data-volume-init

g

preprocessing- preprocessing-
companies shuttles

)

create-master-table-
preprocessed-
companies-

[|

I\+

split-data-master-
table-parameters-
X-test-x-train-y-test-

train-model-x-train-
y-train-regressor

[

evaluate-model-
X-test-regressor-
y-test-none

nav.xhtml

 Table of Contents

 		
 Welcome to Kedro Kubeflow Plugin’s documentation!

 		
 Introduction

 		
 What is Kubeflow Pipelines?

 		
 Why to integrate Kedro project with Pipelines?

 		
 Installation

 		
 Plugin installation

 		
 Kedro setup

 		
 Plugin installation

 		
 Available commands

 		
 Configuration parameters

 		
 Dynamic configuration support

 		
 Getting Started

 		
 Quickstart

 		
 Preprequisites

 		
 Install the toy project with Kubeflow Pipelines support

 		
 Build the docker image to be used on Kubeflow Pipelines runs

 		
 Run the pipeline on Kubeflow

 		
 Google Cloud Platform support

 		
 Using kedro with AI Platform Notebooks

 		
 Using kedro-kubeflow with AI Platform Pipelines

 		
 Using kedro-kubeflow with Vertex AI Pipelines (EXPERIMENTAL)

 		
 Kedro-Mlflow integration

 		
 Continuous Deployment

 		
 Github Actions

 		
 Authenticating to Kubeflow Pipelines API

 		
 1. KFP behind IAP proxy on Google Cloud

 		
 2. KFP behind Dex+authservice

_images/pipeline_mlflow.png
data-volume-create

miflow-start-run data-volume-init

preprocessing- preprocessing-
companies shuttles

create-master-table-
preprocessed-
companies-

[|

split-data-master-
table-parameters-
X-test-x-train-y-test-

train-model-x-train-
y-train-regressor

evaluate-model-
X-test-regressor-
y-test-none

_images/pipeline_run.gif
€ o Run of Kubeflow-Plugin-Demo-fd2b5f22-aa26-4d63-a639-c8a7b2cb:

Graph Runoutput Config

data-volume- L]
create

l/

datavolume-init @

N

preprocessing. preprocessing:
companies Shuttles

Clone run

_images/mlflow_ui.png
Experiments Models GitHub Docs

kubeflow_plugin_demo

Experiment ID: 3 Artifact Location: file:///my/local/dir/3
v Notes [4
None
Search Runs:| metrics.rmse < 1 and params.model = "tree" and tags.mlflow.source.type = "LOCAL" @ State: | Active v Clear
Showing 4 matching runs Delete Download CSV %, = B8 & Columns
Parameters Tags <
C] Start Time parameters kubeflow_run_id kedro_version = run_id node_names
C] ©2021-01-12 14:03:12 {'test_size" 0.3, 'random_state": 42} e8f67fcc-159f-4091-a60c-98d237610117 0.16.6 2021-01-12T13.04.07.820Z (‘evaluate_model([X_test,regressor,y_test]) -> None',)
C] ® 2021-01-12 14:01:25 {'test_size" 0.2, 'random_state": 3} 8a2fb1ad-57ba-446f-b899-d35884666d66 0.16.6 2021-01-12T13.02.15.656Z (‘train_model([X_train,y_train]) -> [regressor]',)
C] ©2021-01-12 13:59:32 {'test_size" 0.2, 'random_state": 3} 21d2baac-d5a0-4ec0-aa2f-e0a10510aaf3 0.16.6 2021-01-12T13.00.40.870Z (‘evaluate_model([X_test,regressor,y_test]) -> None',)
C] ©2021-01-12 13:54:20 {'test_size" 0.2, 'random_state": 3} 9211a78f-ef32-4b01-b66f-F9721cc709e2 0.16.6 2021-01-12T12.55.13.828Z (‘evaluate_model([X_test,regressor,y_test]) -> None',)

